Face Recognition Technology

HOME SOURCE CODE SOFTWARE INFO SUPPORT CONTACT US

Face recognition

Face Recognition Based on PCA

DCT-ANN Face Identification

Wavelet-ANN Face Recognition

Face Recognition Based on Polar Frequency Features

Face Recognition Based on FisherFaces

Face Recognition Based on Local Features

Face Recognition in Fourier Space

WebCam Face Identification

Face Recognition Based on Overlapping DCT

Face Recognition Based on Statistical Moments

Face Recognition Based on Nonlinear PCA

Face Recognition Based on Hierarchical Dimensionality Reduction

Fusion of Low-Computational Global and Local Features For Face Recognition

SVD-Based Face Recognition

Correlation Filters Face Verification

ICA Face Recognition

3D Face Recognition

Infrared Face Recognition

Octave Face Recognition

PHP Face Recognition

JAVA Face Recognition

LBP Face Recognition System

HMM Face Recognition System

NMF Face Recognition System

Face matching

Face Identification Based on CPD

GA MACE Face Verification

External resources

Advanced Source Code .Com

Neural Networks .It

Genetic Algorithms .It

Iris Recognition .It

Independent Component Analysis


Download now Matlab source code
Requirements: Matlab, Matlab Image Processing Toolbox.

In a task such as face recognition, much of the important information may be contained in the high-order relationships among the image pixels. A number of face recognition algorithms employ principal component analysis (PCA), which is based on the second-order statistics of the image set, and does not address high-order statistical dependencies such as the relationships among three or more pixels. Independent component analysis (ICA) is a generalization of PCA which separates the high-order moments of the input in addition to the second-order moments. ICA was performed on a set of face images by an unsupervised learning algorithm derived from the principle of optimal information transfer through sigmoidal neurons. The algorithm maximizes the mutual information between the input and the output, which produces statistically independent outputs under certain conditions. ICA representation was superior to representations based on principal components analysis for recognizing faces across sessions and changes in expression.

Index Terms: Matlab, source, code, face, recognition, ICA, independent, component, analysis.

Release 1.0 Date 2011.02.17
Major features:


Face Recognition . It Luigi Rosa mobile +39 3207214179 luigi.rosa@tiscali.it
http://www.advancedsourcecode.com